The fact that this has been replicated is amazing!

  • @[email protected]
    link
    fedilink
    English
    12 years ago

    Really appreciate the write up! I didn’t know the computing power required!

    Another stupid question (if you don’t mind) - adding superconductors to GPUs doesn’t really se like it would make a huge difference on the heat generation. Sure, some of the heat generated is through trace resistance, but the overwhelming majority is the switching losses of the transistors which will not be effected by superconductor technology. Are we assuming these superconductors will be able to replace semiconductors too? Where are these CPU/GPU efficiencies coming from?

    • @[email protected]
      link
      fedilink
      English
      02 years ago

      I sort of covered this in my other reply, but yes, switching losses are also due to electrical resistance in the semiconducting transistor, and yes I’m assuming that semiconductors are replaced with superconductors throughout the system. Electrical resistance is pretty much the only reason any component generates heat, so replacing semiconductors with superconductors to eliminate the resistance will also eliminate heat generation. I’m not sure why you think superconductors can’t be used for transistors though? Resistance isn’t required for semiconductors to work, it’s an unfortunate byproduct of the material physics rather than something we build in, and I’m not aware of any reason a superconductor couldn’t work where a semiconductor does in existing hardware designs.

      Then again I’m also not an IC designer or electrical engineer, so there may be specific design circumstances that I’m not aware of where resistance is desired or even required, and in those situations of course you’d still have some waste heat to remove. I’m speaking generally; the majority of applications, GPUs included, will benefit from this technology.